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Carbonaceous monolithic materials were prepared from especially designed wood-based
composites consisting of wood fibres and phenolic resin binder. By compressing more or
less the starting materials, the monoliths were obtained with densities ranging from 0.3 to
1.2 g cm−3. After carbonisation, electrical conductivity and elastic moduli of a number of
samples were investigated, and typical percolation behaviours were evidenced for both
properties close to their respective critical points. Careful study of the apparent density and
pore texture of the uncompacted carbonised fibres allowed the determination of the
conductivity threshold �c. The morphologies of both the constitutive carbon particles and
the interparticle voids were derived from application of effective-medium theory; the
calculated aspect ratio of the fibres was found to be in good agreement with both SEM
characterisations and other calculations based on percolation theory. Observation of the
universal 3D value of the critical conductivity exponent supported the accuracy of the
estimated value of �c. The rigidity threshold �r was also determined, and the relevance of
the Kirkwood-Keating model accounting for the observed relationship between �c and �r

was established. The value of the elasticity critical exponent suggested central forces
between the fibres, further supporting the suitability of the Kirkwood-Keating model. To the
knowledge of the authors, such a model was shown to apply to only one other material so
far: expanded graphite. Hence, the present work shows the relevance of the classical
concepts of disordered matter physics for describing heterogeneous random carbonaceous
materials. C© 2005 Springer Science + Business Media, Inc.

1. Introduction
Percolation and effective-medium theories (PT and
EMT, respectively) are actually known to be very
powerful tools of investigating various phenomena in
heterogeneous materials. Lists and examples of their
applications may be found in a number of review arti-
cles and monographs [1–5]. If the shape of randomly
dispersed objects is known, PT predicts both the posi-
tion of the connectivity threshold (i.e., the critical vol-
ume fraction of objects at which a connection is es-
tablished all through the system) and the behaviour of
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some physical properties of the disordered system close
to this threshold. Conversely, quantitative information
about the morphology of the percolating objects may
be derived from the value of their critical volume frac-
tion. Additionally, through the critical behaviour ob-
served near the percolation threshold, the nature of the
contacts between the objects may be specified. EMT
may bring the same kind of information, but applies
to a larger class of disordered systems, having wide
ranges of compositions and sometimes not exhibiting
any percolation threshold. Anyway, percolation laws
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may often be derived from limiting forms of equa-
tions based on EMT. Hence, PT and EMT either lead to
similar results or are highly complementary with each
other.

Both theories were already applied to a large num-
ber of different model materials, mainly for confirm-
ing theoretical predictions. Recently, it was shown that
the physical properties of many carbonaceous materials
were accurately accounted for by PT and EMT, and that
very important structural information could be derived
from their application. Especially, composite materials
based on dispersed graphite flakes of carbon fibres [6],
carbonised anthracites [7], carbon powders [8, 9] and
compressed expanded graphite [10–13] were suitably
described through these two theories. Indeed, most car-
bonaceous materials are made of particles, either dense
or porous, having typical well-defined shapes, ranging
from spheres to flakes, platelets and needles, passing by
oblate or prolate ellipsoids. Besides, observations show
that such morphologies are very homogeneous within
a given batch of particles. Hence, many carbonaceous
materials are useful disordered model systems for ap-
plying both PT and EMT.

In the present work, new monolithic carbonaceous
wood-based materials were investigated. The prepara-
tion of these materials is first described and their main
features (microstructure, chemical composition, pore
volume and surface area) are given in Section 2. Electri-
cal conductivity and elastic modulus are then measured
and the results are discussed in Section 3. Finally, the
morphological characteristics of both the solid and the
pore phases are derived, and several theoretical consid-
erations are also developed.

2. Materials
2.1. Preparation of monolithic

carbonaceous wood-based materials
Wood-based composites were made by mixing wood fi-
bres with 10% of a powdery phenolic resin (Bakelite) in
a stirring device. Subsequently the mixture was pressed
to form boards of 10 mm thickness and densities from
0.3 to 1.2 g cm−3 in a uni-axial pressing process at a
temperature of 180◦C. The fibreboards were dried at
103◦C for 2 h, and their carbonisation was carried out
using specimens sized 600 mm × 800 mm, in an inert
atmosphere (N2). To make sure that the carbon materi-
als remained crack-free, a slow heating rate of 1 K/min
was applied up to 500◦C. A heating rate of 5 K/min was
applied up to the peak temperature of 900◦C, which was
kept for 2 h.

2.2. Main features of the monolithic
materials

Due to their rather high heat-treatment temperature
(900◦C), the materials are made of almost pure carbon.
Elemental analysis (Heraeus CHN-O-RAPID) leads to
the following elemental massic composition: C 98%,
H 0.5%, O 1.5%. From the point of view of their
physical properties, the present monoliths are then ex-

pected to behave like rigid electrically conducting car-
bon “sponges”.

As seen by SEM pictures like that presented in Fig. 1,
the fibre-like particles within the monolithic materials
are randomly disordered and entangled with each other.
In agreement with such a microstructure, the monoliths
are, macroscopically speaking, perfectly homogeneous
and exhibit no anisotropy. Additionally, they are crack-
free, thus allowing the measurement of both their con-
ducting and elastic properties.

With the aim of characterising them accurately, a
sample of uncompacted wood fibres was pyrolized in
the same conditions as those already used for the mono-
liths (i.e., up to 900◦C according to the heating rate de-
tailed above). Fig. 2 shows the wood fibres (a) before
and (b) after carbonisation. According to the supplier,
the crude wood fibres should have diameters of about 30
µm and lengths ranging typically from 400 to 500 µm,
leading to ratios length to diameter within the range
13–17. Fig. 2a shows that, even if such high aspect ra-
tios may sometimes be found, most of the particles are
shorter, which lengths being typically slightly below
300 µm. On the other hand, their average diameter is
really close to 30 µm. Carbonising the fibres does not
seem to have much effect on their morphology, since
Fig. 2b is very similar to Fig. 2a. Measuring the di-
mensions of a number of particles leads to an average
ratio length to diameter close to 10. After carbonisa-
tion, the fine resulting powder was studied via nitrogen
adsorption at 77 K and by mercury porosimetry. The
apparent density of the uncompacted pyrolized mate-
rial is dp ≈9.5 × 10−2 g cm−3, and the measured BET
surface area is 515 m2 g−1. The micropore volume (cor-
responding to pore sizes < 2 nm) was estimated at 0.2
cm3 g−1, while the mesopore volume (2–50 nm pore
width) was found to be 0.02 cm3 g−1. Mercury intru-
sion porosimetry could evidence only very large macro-
pores, which were consequently completely ascribed
to interparticle voids. Thus, the constituting particles
were assumed to be carbon fibres having a total pore
volume Vp = 0.22 cm3 g−1. The bulk density of the
carbonaceous backbone of such fibres was measured by
helium pycnometry, and the same value of db = 2.0 g
cm−3 was always recovered, whatever the density of the
monolithic materials. Hence, the apparent density dwf
of a typical carbonised wood fibre could be calculated
according to:

dwf = 1

Vp + 1
db

. (1)

Then, given the above data for Vp and db, dwf ≈
1.39 g cm−3. Knowing such a value is very impor-
tant since the volume fraction � of fibres, i.e., of solid
grains, within the monoliths having various densities
may now be derived. Indeed, the volumic particle con-
tent is calculated as:

� = d

dwf
, (2)

where d is the density of each monolithic material.
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Figure 1 Scanning Electron Microscope (SEM) picture of a wood-based monolith having a density of 0.67 g cm−3.

3. Physical properties of the monoliths
3.1. Electrical conductivities
Parallelepipedic samples, having typical sizes 3 × 1 ×
0.5 cm, were cut. The smallest opposite faces were cov-
ered with silver paint, with which two copper wires
were glued to each surface. The electrical conductivity
was then measured according to the 4-probe method,
applying low currents so as to avoid Joule heating. By
changing the direction of the applied current and taking
the arithmetic mean of the two corresponding voltage
drops, the measurements were corrected from very low
thermo-electric contributions.

The conductivity of the monoliths, σm, plotted versus
the volume fraction � of conducting grains within the
monoliths is presented in Fig. 3. The plot clearly shows
the existence of a non-zero critical content �c, i.e., a
percolation threshold, at which σm vanishes. Above but
near �c, PT predicts that the conductivity reads [1–3]:

σm = σh(� − �c)t. (3)

In Equation 3, � is the volume fraction of the high-
conductivity phase (here, the carbon fibre-like parti-
cles), �c the critical volume fraction at which such
particles first percolate, σh is the intrinsic conductivity
of the latter, and t is the percolation conductivity criti-
cal exponent. For classical three-dimensional systems,
the value of t is usually close to 2 [1, 14].

The curves σm(�) may also be studied in the frame-
work of EMT, for which each grain of a binary mixture
is surrounded by an average medium possessing the ef-
fective conductivity of the composite material itself. A
formula able to describe a binary disordered medium in
which neither the grains of the two phases are mixed to-
gether on a symmetric basis, nor one phase completely
coats the other, has been proposed by McLachlan [15,
16] and is known as the general effective media (GEM)
equation. It may be written as:

(1 − �)
�l − �m

�l + 1−�c

�c
�m

+ �
�h − �m

�h + 1−�c

�c
�m

= 0 (4)

where the constituting terms are defined below.




�m = σ 1/t ′
m ; σm = conductivity of the composite

medium (monolith)
�l = σ

1/t ′

l ; σl = conductivity of the low−
conductivity phase (air)

�h = σ
1/t ′

h ; σh = conductivity of the high−
conductivity phase (carbon)

(5)

t ′ is an exponent related both to the critical volume
fraction �c and to the shape of the grains. It may be no-
ticed that modified forms of Equations 4–5 have been
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(a)

(b)

Figure 2 SEM picture of (a) the crude and (b) the carbonised wood fibres. Measuring the dimensions of a number of particles, the average ratio length
to diameter is found to be close to 10 for both pictures.
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Figure 3 Electrical conductivity (σm) of the wood-based monoliths as
a function of their volume fraction (�) of carbon particles. The solid
curve is the fit of the EMT-derived Equation 6 to the experimental data
points.

suggested [17, 18] in order to fit more accurately the
experimental data below the percolation threshold.
However, the present study is only concerned with ma-
terials having volume fractions of conducting phase
well above the critical content. Besides, in the case of
porous monoliths, i.e., mixtures of conducting grains
and air, σl = 0 and hence Equations 4–5 and their pos-
sible modified forms always reduce to:

σm = σh

(
� − �c

1 − �c

)t ′

. (6)

This formula has the same form as the percolation
Equation 3. Nevertheless, while the percolation expo-
nent t was only expected to take universal values de-
pending on the dimensionality of the system, t ′ may be
found in a wider range of values and obeys the follow-
ing relationship [5]:

t ′ = mh�c = ml(1 − �c) = mlmh

ml + mh
(7)

Equation 7 holds if the two phases of the binary sys-
tem are randomly oriented spheroids, i.e., ellipsoidal
grains having semiaxes a = b �= c; then, the coef-
ficients mh and ml satisfy the following equations [8,
19]:




mh = 1 + 3Lc
h

3Lc
h

(
1 − Lc

h

)

ml = 5 − 3Lc
l

3
(
1 − Lc2

l

)
. (8)

Lc
h(l) denote the effective depolarisation factors of

the high- (low-) conductivity phases associated with
the principal axis (c) of the ellipsoids, and are directly
linked to the shape of the grains. Indeed, the eccentricity
e of the ellipsoids and their corresponding depolarisa-

tion factors Lc are written as [20]:

prolate ellipsoids (a/c < 1) :


e =
√

1 − (a/c)2

Lc = 1 − e2

2e3

[
ln

(
1 + e

1 − e

)
− 2e

] (9a)

oblate ellipsoids (a/c > 1) :


e =
√

(a/c)2 − 1

Lc = 1 + e2

e3
[e − arctan e]

(9b)

In each case, if a = b = c, i.e., corresponding to
spherical grains, then e → 0 and Lc → 1/3. Then,
according to Equation 8, mh and ml take their mini-
mum values 3 and 3/2, respectively. If the aspect ratio
a/c vanishes, i.e., corresponding to fibres or needles,
then Lc → 0. Therefore, mh → ∞ while ml → 5/3.
Conversely, Lc → 1 for high values of a/c, i.e., corre-
sponding to thin discs. Hence, for such a morphology,
both mh and ml tend to infinity.

Fitting the conductivity measurements to either
Equation 3 or 6 is not straightforward, since three ad-
justable parameters are simultaneously implied and,
moreover, the critical exponents are strongly sensitive
to the position of the threshold [21–25]. For that rea-
son, the fits were carried out by fixing the value of
�c. Just like in other works [8–10] for which very rel-
evant results were obtained, �c was estimated from
the apparent density of the constituting grains arranged
in a loose packing. Indeed, for a number of materi-
als, the percolation threshold was found to be slightly
smaller than the packing fraction �p of the percolat-
ing particles [26]. The correlation between �c and
�p is presented in Fig. 4, and such data were fit-
ted by a second-order polynomial. The value of �c
thus corresponding to the measured �p = dp/dwf ≈
6.85×10−2 was found to be �c ≈ 6.14×10−2. Such a

Figure 4 Experimental correlation (for a number of different powdery
materials) between percolation thresholds �c, expressed as critical vol-
ume fractions of particles, and packing fractions �p of the same particles
(after [26]). The solid curve is a second-order polynomial fit to the ex-
perimental data points.
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T ABL E I Parameters m and depolarisation factors Lc derived from the
fit of Equation 6 to the conductivity data of Fig. 3. The carbon particles
correspond the high-conductivity phase (subscript h in Equation 8) while
the interparticle voids are the low-conductivity phase (subscript l in
Equation 8). a/c is the aspect ratio of each phase, being either lower than
1 for prolate (i.e., elongated) spheroids, or greater than 1 for oblate (i.e.,
flattened) spheroids

Carbon particles Interparticle voids

m 23.31 1.52
Lc 1.518 × 10−2 4.37 × 10−1 (oblate) or 2.21 × 10−1 (prolate)
a/c 8.29 × 10−2 1.45 (oblate) or 6.33 × 10−1 (prolate)

critical volume fraction corresponds to a critical density
dc = �c × dwf ≈ 8.53 × 10−2 g cm−3.

Equation 6 was fitted to the conductivity data on
the whole range of composition, see Fig. 3, using the
above fixed value of �c. The fitted curve is very sat-
isfactory and leads to the following parameters: σh ≈
82.7 S cm−1 and t ′ ≈ 1.431. The value of σh is typical
of carbonised wood-based materials (see [9] for exam-
ples), while the morphologies of both kinds of “grains”
(conducting and isolating) may be derived from t ′ and
�c through Equations 7–9. The values of the parame-
ters mh, ml, Lc

h, Lc
l , and the corresponding values of the

aspect ratios a/c of each phase are gathered in Table I.
The aspect ratio of the carbon particles corresponds

to a ratio length to diameter of 1/(8.29 × 10−2) ≈
12.06. Such a value is in good agreement with what
was estimated from SEM observations in the previous
section of this paper. Concerning the shape of the inter-
particle spaces, it may be seen that ml is very close to
its minimum value of 3/2, thus corresponding to spher-
ical voids. Indeed, whether the pore phase be oblate or
prolate, an aspect ratio close to 1 is derived, see Table I.

This latter finding allows the aspect ratio of the solid
grains to be directly derived from the apparent density
of the carbon powder. Indeed, if the interparticle voids
are spherical, it was shown that [8]:

�c = 9Lc
h

(
1 − Lc

h

)
2 + Lc

h

(
15 − 9Lc

h

) . (10)

Equation 10 was derived from the symmetric Brugge-
man model of EMT, and was already shown to lead to
very good results for a number of powders and compos-
ite materials [8, 9]. Putting �c ≈ 6.14 × 10−2 in (10),
one finds Lc

h ≈ 1.544 × 10−2 and hence, through (9a),
a/c ≈ 8.32 × 10−2. The latter value corresponds to a
ratio length to diameter of 1/(8.32 × 10−2) ≈ 12.02,
very close to that, 12.06, found above.

PT may be invoked to support both the value of the
percolation threshold and that of the aspect ratio of
the carbon particles. Indeed, Equation 3 may be ap-
plied only very close to �c and, as shown in Fig. 5,
the exponent is found to be t ≈ 1.81: this value is in
excellent agreement with what was expected in these
three-dimensional randomly disordered materials. Fi-
nally, basing again on PT, the aspect ratio of the fibre-
like particles may be confirmed in a independent way.
The excluded volume concept [27] indeed allows to
derive lower and upper bounds for the critical volume

Figure 5 Checking of the percolation conductivity law, Equation 3, near
the percolation threshold �c. The critical exponent t ≈ 1.81 is the slope
of the straight line, which holds only in a narrow critical region very
close to �c.

fraction of randomly dispersed grains. The excluded
volume Ve of a given object is the volume around the
latter into which the centre of another similarly shaped
objet brought in contact can not penetrate. In the case
of percolating cylinders, the percolation threshold is
linked to Ve according to Equation 11:

1−exp

(
−1.4V

Ve

)
≤ �c ≤ 1−exp

(
−2.8V

Ve

)
, (11)

where V is the volume of the percolating grain, and
the constants 1.4 and 2.8 are dimensionless invariants
corresponding to randomly oriented infinitely thin rods
and deformable spheres, respectively [6, 27]. Since the
carbon particles may be seen as thick rods, such a mor-
phology being thus intermediate between infinitely thin
rods and spheres, the actual value of �c is bounded by
these two limits given in Equation 11. If capped cylin-
ders are considered, i.e., cylinders of length L and di-
ameter W comprising at each end a half sphere of radius
W/2, the volume and the excluded volume read [6]:

{
V = (π/4)W 2L + (π/6)W 3

Ve = (4π/3)W 3 + 2πW 2L + (π/2)W L2 (12)

The ratio length to diameter of the fibres was esti-
mated above to be close to 12; putting L = 12 and
W = 1 in Equations 11–12, one gets:

4.45 × 10−2 ≤ �c ≤ 8.71 × 10−2, (13)

in very good agreement with the previous findings.

3.2. Elastic moduli
Elastic moduli of the wood-based carbon materials
were determined for samples of the size 6×10×60 mm
by three point bending tests according to the german
industrial standard DIN 51902. Eight samples per den-
sity range were tested with a universal testing apparatus
(TesT 112.50 kn.L) at room temperature.
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While randomly disordered, but initially isolated,
particles are forced to come closer to each other, two
percolation transitions are crossed. The first one, inves-
tigated above, corresponds to the inset of a connected
path all through the system. The connectivity threshold
�c is just below the packing fraction and, at that critical
point, the system is not consolidated. The density of the
packing thus needs to be higher for the particles to form
a rigid network. The critical volume fraction at which
the elastic modulus becomes non-zero for the first time
is called the rigidity threshold, �r. Hence, in such a
particulate system, it is obvious that �r > �c, while
the situation �r = �c may be encountered in contin-
uous randomly depleted systems. Anyway, above but
close to �r, the elastic modulus is expected to follow
the percolation scaling law [3]:

E = E0(� − �r)
τ , (14)

where E0 is the elastic modulus at zero porosity and τ is
the critical exponent for elasticity. Such a behaviour is
known for many heterogeneous media, and especially
for sintered materials [28, 29]. Just like t , τ is univer-
sal, however its value also depends on the nature of the
elastic forces acting between the contacting particles.
If central forces (i.e., normal to the surface of the par-
ticles, like in most granular systems) prevail, τ ≈ t in
three-dimensional media, while τ ≈ 2t if beam-like
or angular forces control the elastic behaviour [30–36].
Note that the situation �r > �c is a common feature of
systems in which central forces prevail over any other
kind of elastic forces.

Monolithic compressed expanded graphite is another
material in which the two percolation transitions, such
that �r > �c, are met [37]. However, in contrast with
the present monoliths, the consolidated blocks that can
be prepared from expanded graphite do not need the
presence of a binder, since the particles self interlock
into each other. To our opinion, since the binder is ran-
domly dispersed among the fibre-like particles, its pres-
ence should not influence the position of the rigidity
threshold. In other words, adding the phenolic resin
should just make the particles sticky, and a previous
study indeed showed that various amounts of binder
had only a low influence on the apparent density of the
blocks [38].

Concerning compressed expanded graphite, the fol-
lowing relationship was evidenced for three different
batches of particles [12, 39]:

�r

�c
= 8

5
. (15)

Equation 15 was justified theoretically [12] on the
basis of the so-called Kirkwood-Keating model [3 and
ref. therein], for which central forces are prevalent but
not strictly alone. A few other elastic forces are neces-
sary to account for the rather low rigidity threshold, i.e.,
only 1.6 times larger than the connectivity one accord-
ing to Equation 15. Indeed, if the forces were purely
central, one should have �r = 2(D − 1)�c, D being
the dimensionality of the system [12 and ref. therein],

Figure 6 Elastic modulus (E) of the wood-based monoliths as a function
of their volume fraction (�) of carbon particles. The solid curve is the
fit of the PT-derived Equation 14 to the experimental data points.

and hence �r = 4�c if D = 3. Applying this lat-
ter formula to the present monoliths leads to a rigidity
threshold of 0.2455, thus corresponding to a critical
density of 0.341 g cm−3. Now, the lowest density in-
vestigated here, and for which the monoliths are still
well consolidated, is lower: 0.3 g cm−3. It is then clear
that the elastic forces can not be purely central.

If Equation 15 applies to the present monolithic ma-
terials, then �r = 1.6 × �c ≈ 9.82 × 10−2. Using
this latter value, the percolation law (14) was fitted
to the elasticity data, see Fig. 6. The agreement be-
tween the experimental points and the calculated curve
is satisfactory, and the obtained values for E0 and τ

are 26.2 × 103 MPa and 1.83, respectively. E0 is in the
same order of magnitude than what is usually found for
a number of non porous carbonaceous materials [11,
40], while the elasticity exponent is almost equal to the
conductivity one, thus strongly supporting the preva-
lence of central forces within the monoliths. However,
a few other kinds of forces (e.g., angular) are required
and enough to lower dramatically the rigidity thresh-
old without affecting the value of the critical expo-
nent. Such a description of the material matches the
Kirkwood-Keating model which predicts Equation 15.
While such a model was already confirmed by numer-
ical simulations [41], it is to our knowledge only the
second time that it applies to a real three-dimensional
material. Finally, it may be noticed that the universal
value of the exponent τ was obtained from the data
points corresponding to the whole range of densities,
while the universal value of t was observed only very
close to �c. Surprisingly, a critical region for the elastic
modulus much wider than that of the electrical conduc-
tivity was also evidenced in the case of compressed
expanded graphite [10, 11, 39].

4. Conclusions
In this work, some physical properties of new car-
bon porous monoliths were investigated. Using cheap
materials, i.e., wood fibres and a few phenolic resin,
consolidated blocks having porosities ranging from
40 to 85% could be obtained through a simple
process. They are characterised by good electrical
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conductivities, although typical of heat-treated carbons
(≈10–60 S cm−1). Such satisfactory conducting prop-
erties allow these materials to be used as porous elec-
trodes and light electromagnetic shields [42]. Besides,
once activated, such carbons should behave as adsor-
bents having electrical and thermal conductivities both
much greater than those of classical granular adsor-
bent beds; such a feature could be very interesting both
for the adsorption process itself, which is exothermal,
and for the regeneration of the adsorbent. Addition-
ally, monoliths are more easily handled than powders.
Finally, dispersing small catalytic particles onto such
conducting high-area rigid supports should be worth
studied.

From a more academic point of view, typical percola-
tion behaviours were evidenced in such randomly dis-
ordered materials, still prolonging the extensive list of
systems to which percolation theory applies. Effective-
medium theory was also shown to be a useful comple-
mentary tool, enabling the accurate determination of
the aspect ratios of the constituting grains and those
of the interparticle voids. Finding the signature of cen-
tral elastic forces through the value of the correspond-
ing critical exponent on the one hand, and observing
the relationship �r = 8/5�c between the two critical
points on the other hand, supported the relevance of the
Kirkwood-Keating model. So far, the latter was only
found to apply to compressed expanded graphite.

It thus seems that disordered carbon materials are
really accurately described by the classical concepts
of disordered matter physics (critical phenomena, ex-
cluded volume, average coordination of dispersed ob-
jects, . . . ), and thus are good candidates for testing a
number of modern theories.
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P U R I C E L L I , J. Phys. D: Appl. Phys. 33 (2000) 3094.
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